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Abstract

The widespread use of neonicotinoid insecticides in recent years has led to increasing envi-
ronmental concern, including impacts to avian populations. In Texas and across their range,
Northern bobwhite (Colinus virginianus) habitat frequently overlaps cultivated cropland pro-
tected by neonicotinoids. To address the effects of necnicotinoid use on bobwhites in
Texas, we conducted a historical analysis from 19782012 in Texas’ ecological regions
using quail count data collected from North American Breeding Bird Survey and Texas
Parks and Wildlife Department, and neonicotinoid use data from the U.S. Geological Sur-
vey. We considered bobwhite abundance, neonicotinoid use, climate, and land-use vari-
ables in our analysis. Neonicotinoid use was significantly (p<0.05) negatively associated
with bobwhite abundance in the High Plains, Rolling Plains, Gulf Coast Prairies & Marshes,
Edwards Plateau, and South Texas Plains ecological regions in the time periods following
necnicotinoid introduction {1994—-2003) or after their widespread use (2004-2012). Our
analyses suggest that the use of neonicotinoid insecticides may negatively affect bobwhite
populations in crop-producing regions of Texas.

Introduction

Northern bobwhites (Colinus virginianus- hereafter, bobwhites) are grassland birds frequently
Adults are predominantly granrvorous, but will consume green vegetation and 1nvertabrdte s.
Chicks and breeding females consume a higher percentage of invertebrates to meet the protein
requirements of growth and reproduction, respectively [4].

Despite their important social and economic value, bobwhites have experienced range-wide
declines for decades, and have been considered near threatened since 2004 [5]. Breeding Bird
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CGompeting inleresis: The authors have declared Survey (BBS) analyses indicate that Texas bobwhite populations had an overall increase of
that no competing interests exist. 3.3% per year from 1966-1979, and have decreased 4.7% per year from 1980-1996 and 5.8%

Neonicotinoids are a relatively new class of insecticide. They were registered for use in
Texas in 1994 and became widely marketed throughout Texas and the U.S. in the mid 2000’s.
There are seven neonicotinoid compounds currently on the market, all of which exhibit sys-
temic properties that allow them to be absorbed and distributed throughout a plant as it
Neonicotinoids act as agonists against postsynaptic nicotinic acetylcholine receptors in the
central nervous system, and variation in the functional structure of vertebrate and insect nico-
larity as the most widely used class of insecticide in the world is partially attributable to this
selective action, which results in a lower vertebrate toxicity than their predecessors (e.g., organ-
ophosphates and carbamates). Neonicotinoids are registered for use on cereals, fruits, orna-
mentals, vegetables, cotton, vines, potatoes, and for home, lawn, and veterinary purposes.

Neonicotinoids are used in a variety of applications (e.g., foliar spray, soil drench, trunk
injection, etc.), but are primarily used as a seed treatment. Since their introduction in the mid
1990’s, the prophylactic application of insecticidal seeds treatments has increased exponen-

and persistence in the environment. At least twenty-nine independent studies in nine coun-
tries across the world have identified neonicotinoids in surface waters, including detections
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The effects of neonicotinoids on avifauna are of particular interest and concern in the pres-
ent study. Laboratory analyses indicate that birds exposed to various neonicotinoid com-
pounds at field-realistic levels (i.e., dosage consistent with the manufacturer’s suggested
application rate) elicit signs of oxidative stress, immunotoxicity, degenerative changes in the
liver, disruption of the pituitary-thyroid axis, and alterations in reproductive ability including
fewer and fragmented germ cells, reduced fertilization, eggshell thinning, delayed embryonic
development and egg laying, severely reduced clutch size, and immunosuppression in adults
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The widespread and frequent use of neonicotinoid insecticides in bobwhite habitats war-
rants a thorough analysis of the relationship between bobwhite abundance and neonicotinoid
use in the state of Texas. Therefore, our objective was to analyze long-term data in each of the
ecological regions of Texas to characterize the relationship between bobwhite abundance and
neonicotinoid use in Texas. We hypothesized that bobwhite abundance would be inversely
related to neonicotinoid use in regions where neonicotinoids are heavily applied, but that no
relationship would exist in regions of little or no neonicotinoid use.

Methods

To determine the potential eftects of neonicotinoid use on Texas bobwhites, we utilized avail-
able data on bobwhite abundance, neonicotinoid use, temperature, precipitation, and land use
in a statistical analysis for the years 1978-2012. This analysis is limited by quail abundance
data, which was not available before 1978 and neonicotinoid use data, which was not available
after 2012, at the time of our study. Our study areas included each of the ecological regions
(hereafter, ecoregions) of Texas excluding the Trans-Pecos, which is the western periphery of
land Prairies into a single ecoregion, “Cross Timbers & Prairies,” to align with data reporting
of environmental variables.

Construction of study plots

Texas Parks and Wildlife Department (TPWD) and Breeding Bird Survey each record quail
counts during annual surveys conducted along driving transects. We used these driving tran-
sects to develop study plots from which we gathered spatial data for our analysis. Driving tran-

jected into NAD 1983 UTM Zone 14 N. Plots were constructed by placing a 0.5 km buffer
around driving transects, and a total of 165 BBS and 143 TPWD plots were included in the
analysis. Breeding Bird Survey plots averaged 41.0 km + 2.8 km in length with a low of 30.2 km
and a high of 49.1 km, and Texas Parks and Wildlife Department plots averaged 32.5

km + 0.38 km in length with a low of 30.9 km and a high of 33.0 km. The Breeding Bird Survey
and Texas Parks and Wildlife Department were unable to consistently survey all transects over
the years; therefore, when a transect was not surveyed in a given year, the corresponding plot
was omitted from the analysis for that year.

Data collection

Quail abundance. We obtained quail abundance data from the U.S. Geological Survey
(pers. comm., M. Frisbie, TPWD, 2015). Survey protocols varied between organizations.
Breeding Bird Survey volunteers conduct general avian surveys in June by stopping 50 times
for exactly 3 minutes at equal intervals along driving transects and recording visual and audi-

.....

quail surveys in August by driving at 32.2 km per hour along driving transects and recording
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N Breeding Bird Sureey Duiving Traunseets Fesas Pavks and Wildlife Depaviment Driving Transects

250 Rt 1000

Fig 1. Distribution of Breeding Bird Survey and Texas Parks and Wildlife Department driving transects within
Texas ecoregions. 1) Trans Pecos, 2) High Plains, 3) Rolling Plains, 4) Cross Timbers & Prairies, 5) Piney Woods, 6)
Edwards Plateau, 7) Gulf Coast Prairies & Marshes, 8) South Texas Plains.
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Edwards Plateau and Cross Timbers & Prairies ecoregions, and omitted the Pineywoods ecore-
gion altogether, we report only the BBS analysis for these regions.

Neonicotinoid use estimates. To evaluate neonicotinoid levels in each plot we obtained
noid comnpounds applied in Texas. The USGS calculates ePest High values using data from
USDA Crop Reporting Districts. Unlike ePest Low values, ePest High values incorporate data
from neighboring districts when data for a given Crop Reporting District is missing. The
summed total of all compounds was used to obtain a single value of estimated annual county-
level neonicotinoid use. Total neonicotinoid use within each plot was calculated by multiplying
the cumulative county neonicotinoid use by the proportion of county cropland that fell within
each plot.

Climate. Research has shown that the Palmer Modified Drought Index (hereafter,

climatic conditions within each plot, we obtained the following data for each year of the study
period: (1) raster images of precipitation for each month of the breeding season; (2) monthly
raster images of summer mean maximum monthly temperature (daily values were not avail-
able) from the Parameter-elevation Regressions on Independent Slopes Model online data-

modeled raster graphics and are the U.S. Department of Agriculture’s official spatial climate
data. Drought index values range from -5.0 (severe drought conditions) to +5.0 (extreme wet
conditions) and are calculated using precipitation, temperature, evapotranspiration rates, and

used to identify mean precipitation across each plot for each month of the breeding seasor.
These values were then summed, yielding total breeding precipitation. Summer mean maxi-
mum monthly temperature was calculated by averaging the maximum temperature in each
plot for each of the summer months using Zonal Statistics. Drought index values are available
were averaged over summer months for each ecoregion, resulting in a single value represent-
ing the summer drought index.
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Land use. As habitat fragmentation by agricultural intensification and urbanization is fre-
quently cited as a major contributor to quail decline, we used total cultivated cropland and
total developed area in our analysis. To identify these land use variables in our plots, we used
statistically modeled land cover raster images obtained from the USGS Earth Resources Obser-

jected into NAD 1983 UTM Zone 14 N. We reclassified land use into two separate binary
raster images for each year of the study period: (1) cultivated cropland—non-cultivated crop-
Jand and (2) developed—undeveloped. Tabulate Area was used to calculate the total cultivated
cropland and total developed area falling within each plot.

Supporting shapefiles. Supporting boundary layers including state, ecoregion, and
county boundaries were obtained online from Texas Natural Resources Information Systems

1983 UTM Zone 14 N prior to their use in any operations.

Statistical analysis

Because survey protocols varied drastically between BBS and TPWD (e.g., driving transect
lengths and observation procedures), and could influence model outcome, datasets from both
organizations were analyzed separately. Analyses were divided into three time periods accord-
1993), directly following introduction (1994-2003), and after their widespread use (2004~
2012). These are respectively termed BBS-Pre/TPWD-Pre, BBS-Light/TPWD-Light, or

3.2.3 [#7]
CRIIE
N

T and
-]

%

o 124
=

=

o 190+
el
-
s B
E

= 60
o]

2

= 343
g 40
K]
e
51

~ahoat

= .
= 8-

1978 1982 1986 1990 1904 1998 2007 2006 1018
Year

Fig 2. Temporal trend in neonicotinoid use in Texas. USGS ePest High estimates for total neonicotinoid use in the
state of Texas from 1978-2012. Statistical analysis was split into three time periods based on overall levels of
neonicotinoid use: prior to neonicotinoid introduction (Pre), directly following neonicotinoid introduction (Light),
and after the widespread use of neonicotinoids (Heavy).
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Table 1. Description of variables used in historical analysis.

Variable Category Description Source

Bobwhite abundance Bobwhite Bobwhite count in study plot (number of individuals of any age). M. Frisbee, TPWD,
(Dependent) 2015;

(53

Summer drought index Climate Summer Palmer Modified Drought Index within study plot. [a2
(Independent)

Breeding season precipitation Climate Sum of breeding season precipitation within study plot (mm). [81]
(Independent)

Summer mean maximum monthly Climate Mean of summer maximum monthly temperature within study plot (*C). | [61]

temperature (Independent)

Total cultivated cropland Land Use Total cultivated cropland within study plot (km?). [#5]
(Independent)

Total developed area Land Use Total developed area within study plot (km?). [83]
(Independent)

Total neonicotinoid use Pesticide Sum of neonicotinoid application within study plot (kg; ePest High
(Independent) | estimate).

hrineddo o/ 101387 Viownad pone 0181100 100

To identify distribution patterns in the data, we constructed histograms and ¢-q plots of all
variables. It was apparent that quail abundance was zero-inflated; thus, to describe this
response as a function of the explanatory variables (7'

), we used zero-inflated generalized
In most cases, six different models were generated to describe trends in each of the ecore-
gion-level analyses: one model explaining each dataset (BBS and TPWD) for each of the three
time periods. We excluded TPWD data from the analysis in the Cross Timbers & Prairies,
Edwards Plateau, and Pineywoods ecoregions due to insufficient data or poor geographical
distribution of driving transects.
The model selection process consisted of three steps: 1) The observed response was fitted to

negative binomial distribution for the random error, and used stepwise regression in both for-
ward and backward directions to identify the combination of variables that yielded the lowest

predictors selected in step 1 were included in generalized linear, zero-inflated, hurdle and gen-
eralized additive models, all of them with negative binomial distribution for the error; and, 3)
AICc weights (quantifying the weight of evidence in favor of a given a model) were calculated
for all candidate models to select the model that provided the largest AICc weight.

Given the diversity of sampling locations and data sources for all the bobwhite data set, it
was practically impossible to get the same set of predictors for the selected models. Therefore,
to better summarize the influence of each predictor on bobwhite abundance, we enumerated
the total number of models fitted to predict quail abundance, and the number of times each
predictor’s coefficient was positively or negatively associated to the response.

Results

Of the six predictor variables tested in this study, the strongest negative association was
between bobwhite abundance and neonicotinoid use (Tables 2 and 2). Total developed area
and total cultivated cropland were also negatively associated with bobwhite abundance,
although to a lesser extent than with neonicotinoid use. In contrast, summer drought index
and summer mean maximum monthly temperature were positively associated, while breeding
season precipitation did not show a significant positive or negative association with bobwhite
abundance (Tables 2 and 3).
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Table 2. Overall influence of predictor variables on quail abundance across all best-fit statistical models. Percent
of models (out of 32) positively or negatively associated with quail abundance.

Variable Positive association Negative association
Total neonicotinoid use 5% 62%

Total developed area 19% 38%

Total cultivated cropland 22% 31%

Breeding season precipitation 16% 16%

Summer mean maximum monthly temperature 44% 16%

Summer drought index 7% 9%

fepsdolorg 013 Vioumal pone 011003002

Prior to neonicotinoid introduction (1978-1993), summer drought index, breeding season
precipitation, and summer mean maximum monthly temperature were positively and signifi-
cantly associated (p < 0.05) with quail abundance in five of the seven ecoregions tested (all but

and total developed area were significantly and negatively associated (p < 0.05) with quail
abundance at most of the seven regions, except for the Piney Woods and Edwards Plateau (for

cropland) and the High Plains and Gulf Coast Prairie (for developed area, Table 3).

During the period of light neonicotinoid use (1994-~2003), summer drought index and
breeding season precipitation were positively and significantly associated (p < 0.05) with quail
abundance at the Rolling Plains, Piney Woods, and Cross Timbers & Prairies regions. Summer
mean maximum monthly temperature was also significantly and positively associated
(p < 0.05) with quail abundance at the High Plains and Rolling Plains regions, but it was nega-
tively and significantly associated (p < 0.05) with abundance at the Cross Timbers & Prairies

use were negatively and significantly associated (p < 0.05) with quail abundance at all regions
from which we had sufficient data for comparisons, including the Rolling Plains, Piney
Woods, Gulf Coast Prairies, Edwards Plateau, and South Texas Plains. Total cultivated crop-
land was also negatively and significantly associated with quail abundance at the High Plains

During the period of heavy neonicotinoid use (2004-2012), summer drought index and
summer mean maximum monthly temperature continued to have a positive significant rela-
tionship (p < 0.05) with quail abundance at the High Plains, Rolling Plains, Gulf Coast Prairie,
and South Texas Plains (7a
regions, quail abundance was negatively and significantly associated (p < 0.05) with summer
drought index, summer mean maximum monthly temperature, and total cultivated cropland.
Total neonicotinoid use and quail abundance were significantly negatively associated
(p < 0.05) in all regions. Overall, ten of the 14 statistical comparisons between neonicotinoid
use and quail abundance for the period 1994-2012, indicated a significant negative association
(p < 0.05) at most of the Texas regions from which data were available. In three of the four
cases where the results were not significant, the coefficients were still negative (T

Discussion

In all instances where neonicotinoid use was significantly associated with bobwhite abun-
dance, it exhibited a negative influence on bobwhites. All other variables in the historical anal-
ysis exhibited both positive and negative associations with bobwhite abundance across the
best-fit models, indicating spatial and temporal differences in the way variables influence bob-
white abundance.
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Table 3. Coefficients of best-fit statistical models.

Summer drought | Breeding season Summer mean max. monthly ; Total cultivated Total developed | Total neonicotinoid | Model
index precipitation temperature cropland area use Type
High Plains
BBS-Pre -0.021* 0.372%** Hurdle
TPWD-Pre 0.105 0.007** 0.424* -0.001 1.06 Zero-
inflated
BBS-Light 0.38*** Zero-
inflated
TPWD-Light 0.014 -0.065*** Zeto-
inflated
BBS-Heavy -0.032%** Hurdle
TPWD-Heavy 0.390"** 0.466"** -0.069"** GLM
Rolling Plains
BBS-Pre 0.002%* 0.142"** -0.017°%* 0189 GLM
TPWD-Pre 0.136"* 0.061 -0.01 -0.84"%* Zero-
inflated
BBS-Light 0.135** 0.299"** 0.009 -0.212%* -0.615""* GLM
TPWD-Light 0.122** 0.008 -0.006 Zero-
inflated
BBS-Heavy 0.117** 0.036"** 0.161*" -0.058"** GLM
TPWD-Heavy 0.207*** -0.004"* 0.021 0.03 -0.056" Hurdle
Cross Timbers & Prairies
BBS-Pre -0.052* -0.029"** -0.03" GLM
BBS-Light 0.127 0.002** -0.141 -0.066"** GLM
BBS-Heavy -0.196" -0.292** -0.1117% -0.067 LM
Pineywoods
BBS-Pre -0.122%% 0.053"** -0.236%** GLM
BBS-Light 0.192* 0.003** -0.232% 0.079*** -0.352"* GLM
Edwards Plateau
BBS-Pre 0.003** 0.125 0.101*** -0.128 Zero-
inflated
BBS-Light -0.213** -0.712* Hurdle
BBS-Heavy -0.207%** -0.038" Zero-
inflated
Gulf Coast Prairies & Marshes
BBS-Pre 0.175%** GLM
TPWD-Pre 0.143** 0.251*% -2.41 LM
BBS-Light -0.001" 0.092 -0.088" -0.07** GLM
TPWD-Light -0.001 -0.028 0.074 Zero-
inflated
BBS-Heavy 0.118" 0.171* -0.012* GLM
TPWD-Heavy 0.194 0.297* 0.355 GLM
South Texas Plains
BBS-Pre -0.039"** GLM
TPWD-Pre 0.173*** Hurdle
BBS-Light -0.089 -0.013*** Hurdle
TPWD-Light -0.001 0.034"* -0.009 Zero-
inflated
BBS-Heavy 0.079* -0.001 -0.049 -0.008 Hurdle
(Continued )
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Table 3. (Continued)

Summer drought | Breeding season Summer mean max. monthly ; Total cultivated Total developed | Total neonicotinoid | Model
index precipitation temperature cropland area use Type
TPWD-Heavy 0.152 0.291** GLM
“p< 0.05
“p< 0.01;
“**p< 0,001,

Coefficients given for hurdle and zero-inflated models are count model coefficients.

Mipe e org/ 10137 Voumel pone 31811000002

Unsurprisingly, at least one climate variable was included in over 80% of the best-fit mod-
els, indicating a strong influence of climate on bobwhite abundance. In accordance with previ-

conditions bobwhites compete with irruptive populations of other animals (e.g., rodents) for
resources, and in extremely wet conditions flooding can destroy nests and cause birds to
drown. An assessment of bobwhites conducted in the Gulf Coast Prairies & Marshes in 2015
(a record rainfall year in Texas) identified drowned, radio-collared hens and flood-destroyed
nests (per. comm., N. Silvy, Texas A&M University, 2016). This disparity in too little or too
much rainfall may explain why breeding season precipitation was negatively correlated with
bobwhite abundance in 5 of the 10 best-fit models in which it was included.

We were surprised to find that summer mean maximum monthly temperature was posi-
tively associated with bobwhite abundance in nearly half of the best-fit models. Bobwhites’
critical for them to avoid heat stress during the summer months, and past research has identi-
fied a negative relationship between summer mean maximum daily temperature and bobwhite
averaged 34.5°C £ 1.7° (94.1° F + 3.1°) and showed a slight (< 1°C) increase over time periods.
In the High Plains, Rolling Plains, Gulf Coast Prairies & Marshes, and South Texas Plains all
significant (p<0.05) correlations between abundance and temperature were positive, while sig-
nificant (p<0.05) correlations in the Cross Timbers & Prairies, Pineywoods, and Edwards Pla-
teau were all negative. The disparity in our results and those of others warrants further
investigation into the effects of summertime temperature on bobwhites, with careful consider-
ation of regional differences.

Since habitat fragmentation by agricultural intensification and urbanization is well estab-
lished as a major contributor to quail decline [9], we expected both land use variables to elicita
negative effect on bobwhite abundance. Both total developed area and total cultivated cropland
were more often negatively associated with bobwhite abundance. We suggest this may be asso-
ciated with the size and structure of our study plots and the structure of developed areas and
cultivated cropland. Bobwhites primarily utilize weedy fence and hedgerows in cultivated
areas. Because driving transects (i.e., roads) break up cultivated fields, weedy fence and hedge-
rows are well represented in our 1 kilometer-wide study plots containing cultivated cropland.
The high proportion of fencerows in our study plots in comparison to the vast majority culti-
vated cropland (where weedy fenicerows are becoming increasingly sparse), may positively bias
the number of quail counted in a survey. Conversely, developed areas, although not uniform
in structure, typically do not contain boundaries along roads that would bias the number of
quail seen along a random transect in a developed area.
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Total neonicotinoid use exhibited a negative influence on bobwhite abundance in over 60%
of all models included in the time periods after their introduction. None of the best-fit models
indicated a significant (p<0.05) positive association between neonicotinoid use and bobwhite
abundance in any of the time periods. In areas where neonicotinoids may contribute to bob-
white decline, we would expect to see a statistically significant inverse relationship between
these two variables during the time period after the widespread use of neonicotinoids (2004-
2012), and possibly the time period directly following their introduction (1994-2003). The
High Plains, Rolling Plains, Gulf Coast Prairies & Marshes, South Texas Plains, and Edwards
Plateau all exhibited a negative relationship between bobwhite abundance and neonicotinoid
use during at least one of these two time periods.

All of the ecoregions mentioned above produce crops (e.g., winter wheat, upland cotton,

lion acres of corn and 2.3 million acres of sorghum from the High Plains, South Texas Plains,
Gulf Coast Prairies & Marshes, Cross Timbers & Prairies, and Edwards Plateau. In the same
year, 2.2 million acres of winter wheat and 4.6 million acres of cotton were harvested from
these regions as well as the Rolling Plains, 92 thousand acres of sunflower were harvested
mainly from the South Texas Plains, and 140 thousand acres of soybeans were harvested from
the Gulf Coast Prairies & Marshes [72, 7%]. Each one of these crops is protected by the neoni-

cotinoid class of insecticide, and in many cases neonicotinoids are the most commonly applied
insecticide used to protect these crops.

Of all neonicotinoid applications, treated seeds probably present the biggest hazard to bob-
whites and other granivorous species because they likely deliver higher concentrations of
noid seed treatment is a common practice for many crops planted in Texas, and bobwhites
may be exposed to treated seeds not properly stored, shallowly sown, or spilled during plant-
of severe incapacitation resulting from exposure to imidacloprid, for example, is seen in bob-
whites at levels between 30~60% of the LD, and neurotoxic effects are usually exhibited

Bobwhites’ susceptibility to neonicotinoid-treated seeds may help explain the negative cor-
relation we found between bobwhite abundance and total neonicotinoid use in ecoregions
rich in crop production. First, the neurotoxic effects of neonicotinoids may increase bob-

each year to maintain populations. Many Texas crops are planted in the spring (e.g., corn, sor-
ghum, soybeans, sunflower, cotton), and neonicotinoid application often coincides with the
development of sex organs as bobwhites physiologically prepare for the breeding season. Neo-
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Turaga et al. (2015) recently analyzed 98 bobwhite and scaled quail in the Rolling Plains
and determined that they are not directly affected by the use of neonicotinoids based on two
lines of evidence: a lack of treated seeds in their crops and low concentrations (< 62.29 ng/g)
of neonicotinoids in their livers. Since neonicotinoids are highly water soluble, it is likely that
only low concentrations of neonicotinoid compounds will be found in organ tissues. Addition-
ally, the authors suggest that quail may circumvent neonicotinoid poisoning due to repellent
effects of treated seeds, avoidance of treated seeds, and seed husking. However, EPA scientists

has suggested that bobwhites do not husk seeds [94]. Like other birds [17, 50-52], bobwhites

are likely to consume treated seeds, at least initially, potentially subjecting them to lethal or
otherwise harmful doses of neonicotinoids.

Conclusions

Bobwhites have undergone population declines long before the introduction of neonicoti-
noids; however, long-term monitoring efforts reveal that they are declining faster now than
they were in the past throughout most southeastern and Midwestern states. The results of our
analyses suggest that neonicotinoid use may contribute to bobwhite decline in Texas ecore-
gions that produce crops utilized by bobwhites. These results also could be applied to other
regions of the southeastern and Midwestern United States where bobwhites are likely to feed
within or near agricultural environments. [t is possible that neonicotinoids have partially con-
tributed to bobwhite declines in various regions of the U.S.

Supporting information

$1 Fig. Gould’s ecological regions of Texas and Palmer Modified Drought Index reporting
regions.
(TIF)
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